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Metformin (dimethyl biguanide) is a synthetic derivative of guanidine, isolated from 
the extracts of Galega officinalis, a plant with a prominent antidiabetic effect. Since 
its discovery more than 50 years ago, metformin represents a worldwide milestone in 
treatment of patients with type 2 diabetes (T2D). Recent evidence in humans indicates 
novel pleiotropic actions of metformin which span from its consolidated role in T2D man-
agement up to various regulatory properties, including cardio- and nephro-protection, as 
well as antiproliferative, antifibrotic, and antioxidant effects. These findings, together with 
ground-breaking studies demonstrating its ability to prolong healthspan and lifespan 
in mice, provided the basis for defining metformin as a potential antiaging molecule. 
Moreover, emerging in vivo and in vitro evidence support the novel hypothesis that met-
formin can exhibit immune-modulatory features. Studies suggest that metformin interferes 
with key immunopathological mechanisms involved in systemic autoimmune diseases, 
such as the T helper 17/regulatory T cell balance, germinal centers formation, autoanti-
bodies production, macrophage polarization, cytokine synthesis, neutrophil extracellular 
traps release, and bone or extracellular matrix remodeling. These effects may represent 
a powerful contributor to antiaging and anticancer properties exerted by metformin and, 
from another standpoint, may open the way to assess whether metformin can be a 
candidate molecule for clinical trials involving patients with immune-mediated diseases. 
In this article, we will review the available preclinical and clinical evidence regarding the 
effect of metformin on individual cells of the immune system, with emphasis on immuno-
logical mechanisms related to the development and maintenance of autoimmunity and 
its potential relevance in treatment of autoimmune diseases.

Keywords: metformin, autoimmunity, autoimmune diseases, T cell, B cell, macrophage, neutrophil, fibroblast

INTRODUCTION

Since its discovery more than 50 years ago, metformin represents a worldwide milestone in treatment 
of patients with type 2 diabetes (T2D). Metformin (dimethyl biguanide) is a synthetic derivative 
of guanidine, isolated from the extracts of Galega officinalis, a plant with a prominent antidiabetic 
effect (1). Indeed, metformin lowers both fasting and post-prandial glucose levels by inhibiting 
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hepatic glucose production, reducing intestinal glucose absorp-
tion, and improving glucose uptake and utilization by peripheral 
tissues. However, the exact pharmacodynamic properties have 
been elusive for many years still remaining a matter of debate 
(2). Recent evidence in humans indicates novel pleiotropic 
actions of metformin which span from its consolidated role in 
T2D management up to various regulatory properties, includ-
ing cardio- and nephro-protection, as well as antiproliferative, 
antifibrotic, and antioxidant effects (3). These findings, together 
with ground-breaking studies demonstrating its ability to pro-
long healthspan and lifespan in mice (4), provided the basis for 
defining metformin as a potential antiaging molecule (5). This 
fascinating hypothesis is currently being tested through the ongo-
ing Targeting Aging with Metformin study, a placebo-controlled 
trial (5) aimed at investigating the potential role of metformin in 
delaying the onset of aging-associated diseases.

Notably, emerging in vivo and in vitro evidences suggest that 
metformin can exhibit immune-modulatory features (6, 7). These 
effects may represent a powerful contributor to antiaging and 
anticancer properties exerted by metformin.

In addition to recent evaluation of the metabolic and immu-
nological roles of metformin (7), this article will appraise current 
preclinical and clinical data regarding the effect of metformin on 
individual cells of the immune system. Furthermore, the immu-
nological mechanisms exerted by metformin will be explored as 
well as its potential relevance in the treatment of autoimmune 
diseases.

PHARMACOKINETICS AND MECHANISM 
OF ACTION OF METFORMIN

Pharmacokinetics
Upon oral administration in humans (typical therapeutic doses 
range from 1,000 to 3,000 mg/day), approximately 70% of met-
formin is absorbed from the small intestine (8), with the remain-
ing component passing into the colon before being excreted in 
feces (9). The intestinal absorption is primarily mediated by the 
plasma membrane monoamine transporter, which is expressed 
on the luminal side of enterocytes; however, the organic cation 
transporters 1 and 3 may also contribute (10). Following absorp-
tion, metformin is mainly distributed in the intestine, liver, and 
kidneys and finally excreted unchanged in urine by means of 
active tubular secretion, with half-life of ~5 h (8).

Mechanism of Action
Consistent data show that mitochondria are the main subcellular 
targets of metformin. Indeed, the drug accumulates selectively 
in mitochondria reaching up to 1,000-fold higher concentra-
tions than those observed in the extracellular medium (11). 
Recent studies demonstrate that metformin transiently inhibits 
NADH:ubiquinone oxidoreductase (also referred to as “Complex 
I” of the mitochondrial electron transport chain), an entry enzyme 
of oxidative phosphorylation located in the inner mitochondrial 
membrane. This inhibitory effect evokes a drop in the energetic 
state of the cell, thereby leading to a reduced ATP production and 
increased AMP:ATP ratio (2). The resultant metabolic shift leads 
to the activation of the energy sensor 5′-AMP-activated protein 

kinase (AMPK). Upon activation, AMPK coordinates different 
signaling networks in the attempt to restore a physiologic energy 
balance by switching on ATP-generating catabolic pathways 
and, at the same time, shutting down ATP-consuming anabolic 
mechanisms. The most of the well-characterized glucose-lowering 
effects of metformin relies on AMPK activation, although AMPK-
independent mechanisms have been recently disclosed (2).

Downstream consequences of AMPK activation may account 
for many of the effects of metformin on immune homeostasis. 
Indeed, immunological functions are associated with specific 
metabolic pathways and targeting immunocytes. Upon activation, 
these cells, even those with prominent anti-inflammatory proper-
ties, undergo metabolic reprogramming that is essential for dis-
ease development and maintenance (12, 13). Pro-inflammatory 
cell subset, i.e., neutrophils, M1 macrophages, and effector T cells 
preferentially produce ATP through glycolysis, whereas cells 
with an anti-inflammatory lineage, i.e., memory and regulatory 
T cells (Tregs) and M2 macrophages, favor mitochondrial ATP 
generation (13). In this context, AMPK activation promotes the 
oxidation of substrates in mitochondria, thereby limiting the 
glycolytic capacity of cells (14).

The mammalian target of rapamycin (mTOR) is a downstream 
target of AMPK involved in regulating energy homeostasis by 
modulating cellular processes, such as protein synthesis and 
autophagy implicated in cell proliferation and tumorigenesis in 
cancer (15). With regard to immune function, mTOR is crucial for 
fine tuning T cells activation and differentiation (16) through its 
interaction with the signal transducer and activator of transcrip-
tion (STAT) pathway (17). Metformin has been demonstrated to 
downregulate mTOR signaling through either AMPK-dependent 
(18) or -independent mechanisms (19, 20). Moreover, metformin 
can regulate other pathways relevant to autoimmunity, including 
the nuclear factor kappaB (NF-kB) (21) and mitogen-activated 
protein kinase (MAPK)/c-Jun NH2-terminal kinase (JNK) (22).

EFFECTS OF METFORMIN ON IMMUNE 
CELLS INVOLVED IN AUTOIMMUNE 
DISEASES

Several studies investigated the effect of metformin on different 
cells involved in the induction and maintenance of autoimmunity 
and inflammation. Herein, we will review the available evidence 
regarding the effect of metformin on main cell types and related 
pathways (summarized in Figure 1).

Effects of Metformin on T Cells
T cells are key master players in the delicate equilibrium leading 
to immune tolerance breakdown and autoimmunity (23). The 
traditional dichotomy between Th1- and Th2-mediated diseases 
has been overwhelmed in the last years by the identification 
of novel T cell subsets, including T helper 17 (Th17) and Treg 
populations. Th17 cells are characterized by the production of the 
pro-inflammatory cytokine IL-17 and the expression of the tran-
scriptional factor retinoic-acid-receptor-related orphan nuclear 
receptor gamma (RORγt) and exert pro-inflammatory effects 
relevant to the pathophysiology of several autoimmune diseases 
(24). Conversely, Tregs are characterized by the expression of 
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FIGURE 1 | Effects of metformin on immune cells. After entering the cell, metformin transiently inhibits NADH:ubiquinone oxidoreductase (complex I) located in the 
inner mitochondrial membrane leading to a reduced ATP production and increased AMP:ATP ratio. The resultant metabolic shift stimulates the activation of the 
energy sensor 5ʹ-AMP-activated protein kinase (AMPK). Among several targets, AMPK activation inhibits mammalian target of rapamycin (mTOR), responsible for 
most of the effects on the immune system. Other potential mechanisms include AMPK-independent inhibition of mTOR, reduced reactive oxygen species (ROS) 
production, and block of the TGF-β receptor/Smad interplay. The effects on immune cells are summarized in gray boxes.
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the transcription factor forkhead box P3 and act as negative 
regulators of immune-mediated inflammation (25). Globally, 
their balance represents the subtle edge on which autoimmunity 
develops and maintains chronically (25, 26). T  cell metabolic 

derangement has been largely demonstrated in autoimmune 
diseases such as systemic lupus erythematosus (SLE), with a 
shift toward oxidation, mitochondrial abnormalities, activation 
of mTORC1, and increased glucose flux (27).
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In this context, the mTOR pathway—a key downstream mol-
ecule of AMPK signaling—and its crosstalk with STAT-mediated 
signaling, plays a crucial role in regulating of T cell subset differ-
entiation (17, 28). mTOR-deficient T cells fail to differentiate into 
Th1, Th2, or Th17 effector cells, while maintaining their ability to 
differentiate into Tregs (29). Specularly, the addition of rapamycin 
(mTOR inhibitor) to CD25-cell cultures selectively induces the 
Treg phenotype and function (30). Finally, treatment with mTOR-
targeting agents, such as sirolimus (31) or N-acetylcysteine (32), 
improves disease activity in patients with SLE.

Nath et al. (33) evaluated the effect of oral metformin on experi-
mental autoimmune encephalomyelitis (EAE), a T-cell-mediated 
mouse model of multiple sclerosis (MS). In this study, treatment 
with metformin resulted in a slower disease progression, reduced 
infiltration of inflammatory cells in the central nervous system 
and expression of inflammatory cytokines IFN-γ, TNF-α, IL-17, 
IL-1β, and IL-6. Notably, T cells isolated from mice treated with 
metformin showed reduced expression of IFN-γ and IL-17 along 
with the two transcription factors T-box transcription factor and 
RORγt suggestive of Th1 and Th17 differentiation, respectively. 
A similar effect was obtained when metformin was associated 
with lovastatin (34). Complementary with the reduction of Th17, 
metformin has been also demonstrated to increase Tregs in EAE 
through the inhibition of mTOR pathway (35).

Similarly, Kang et  al. evaluated the effect of metformin on 
collagen antibody-induced arthritis (CAIA), a well-established 
animal model of rheumatoid arthritis (RA) (36). In CAIA mice, 
metformin treatment resulted in a significant improvement of 
arthritis score, with reduced bone destruction, inflammatory 
cytokines production, and RORγt-expressing T cells associated 
with the AMPK/mTOR-mediated inhibition of STAT3 signaling.

The beneficial AMPK/mTOR/STAT3-dependent effect of met-
formin on Th17-mediated inflammation was further confirmed 
in collagen-induced arthritis (CIA) (37–39), dextran sulfate 
sodium-induced colitis (reminiscent of human inflammatory 
bowel disease, IBD) (40), Roquinsan/san model of SLE (41), and 
acute graft-versus-host disease (42).

In addition to the AMPK/mTOR/STAT3 pathway, other T cell 
pathogenic mechanisms may be targeted by metformin. Several 
other metabolic pathways regulate the function of T  cells in 
health and diseased conditions (43, 44). Mitochondrial oxidative 
metabolism has been shown to be the main ATP synthesis pathway 
in experimental SLE (27, 45). Using the triple congenic B6.Sle1.
Sle2.Sle3 lupus-prone mouse model, Yin et al. (46) demonstrated 
that metformin can restore T cell metabolism and reduce IFN-γ 
production. Moreover, the simultaneous treatment of mice with 
metformin and 2-deoxy-d-glucose—a glycolysis inhibitor—signifi-
cantly reduced anti-nuclear antibodies and anti-double-stranded 
DNA (dsDNA) antibodies production and improved the severity 
of associated nephritis. Similar findings were obtained from the 
same group in B6.lpr mice, another model of spontaneous SLE (47).

Taken together, data from animal models of T cell-mediated 
autoimmunity strongly support an immune-modulatory effect of 
metformin with the ability to restore the balance between patho-
genic and tolerogenic T cell populations by acting on the AMPK/
mTOR/STAT3 and on the normalization of T cell mitochondrial 
metabolism.

Despite the promising results obtained with experimental 
models, data in humans are still scarce. Yin et al. (46) demon-
strated that CD4+ T  cells from SLE patients exhibit elevated 
cellular metabolism when compared with healthy controls, a 
feature that correlates with T cell activation and subset distribu-
tion. Moreover, their excessive IFNγ production was significantly 
reduced by adding metformin in  vitro. Furthermore, immune 
function is known to be impaired in T2D, a feature that explains 
an increased susceptibility to infection and autoimmune diseases 
(48). Dworacki et al. (49, 50) showed that T2D is characterized 
by impaired thymic output, as documented by reduced number of 
circulating recent thymic emigrants (RTEs) and CD127+ CD132+ 
naïve T  cells, mainly attributable to the conversion of RTE in 
terminally differentiated memory cells. Among diabetic patients, 
however, those treated with metformin had the highest thymic 
output of a similar magnitude to that observed in nondiabetic 
subjects (50). IL-17 and IFN-γ levels were higher in patients with 
poor glucoregulation at baseline (defined as a glycated hemoglobin 
>7%); nonetheless, a 12-week treatment with metformin could 
reduce IL-17 in diabetic patients. Finally, in patients with poly-
cystic ovary syndrome (PCOS), the administration of metformin 
combined with drospirenone/ethinylestradiol has been shown to 
reduce the frequency of CD4+CD28null T  cells (51), a subset of 
CD4+ Th1 cells lacking the co-stimulatory receptor CD28 thought 
to be involved in autoimmune diseases such as RA (52).

Only limited direct evidence of the potential therapeutic effect 
of metformin in patients with autoimmune diseases are available 
to date. In a cohort study by Negrotto et  al. (53), MS patients 
with comorbid metabolic syndrome were treated with metformin 
(850–1,500  mg/day) or pioglitazone resulting in a significant 
decrease in enlarging T2-weighted and gadolinium-enhanced 
lesions (as a measure of disease burden) on brain magnetic 
resonance imaging compared with matched controls. This result 
was already evident after 6  months of therapy and maintained 
up to 24  months. Moreover, in peripheral blood mononuclear 
cell isolated from patients treated with metformin, the authors 
observed an enhanced AMPK expression, a reduced prevalence 
of IFN-γ- and IL-17-producing cells, and an increase of Treg 
cell percentage. In a proof-of-concept trial by Wang et al. (54), 
113 SLE patients were randomly assigned to receive add-on 
(500–1,500 mg/day) metformin or conventional treatment alone. 
Metformin treatment resulted in a 51% reduction of risk of dis-
ease flares and significantly less corticosteroid exposure.

Effects of Metformin on B Cells
In the network of mutual interactions between immune cells, the 
interplay between T and B cells represents a crucial component 
for the development of adaptive immune responses (55). Despite 
many autoimmune conditions have been considered T cell-driven 
diseases for a long time, several B cell-dependent mechanisms are 
emerging in recent years extending beyond their traditional role 
as autoantibody-producing cells (56, 57).

The stronger support for a potential role of metformin on 
B  cells biology arises from studies investigating its effect on 
hematological malignancies. Several lines of evidence indicate 
that aberrant activation of the mTOR pathway is common in both 
Hodgkin lymphomas and many types of B-cell non-Hodgkin 
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lymphomas (58), thereby contributing to tumorigenesis and cell 
autophagy during response to anticancer agents. Notably, defects 
in autophagy mechanisms has recently been proposed to play 
a role in lymphoma progression, thus implying that autophagy 
represents a promising target for novel lymphoma therapeutics 
(59). Notably, mTOR-driven autophagy is also an important 
mechanism in autoimmune diseases (60, 61).

Shi et  al. (62) reported the antitumor action of metformin-
mediated AMPK activation in lymphoma. Metformin treatment 
induced a dose-dependent suppression of lymphoma cells 
proliferation through negative control of the mTOR pathway. 
Importantly, lymphoma cells sensitivity to anticancer agents was 
enhanced by concomitant treatment of metformin via induction 
of autophagy. Furthermore, metformin use has been associated 
with an improved response rate and progression-free survival in 
diabetic diffuse large B-cell lymphoma patients (63).

Recent studies suggested that mTOR activity plays a critical 
role in B cells during autoimmune diseases. Conditional deletion of 
the mTOR genes in B cells markedly impairs B cell proliferation and 
germinal center (GC) differentiation (64). Using the Roquesan/san  
model of SLE, Lee et al. (41) demonstrated that oral metformin 
can attenuate signs of autoimmunity including anti-dsDNA 
antibodies production and kidney and liver inflammation. This 
clinical improvement was accompanied by a significant reduction 
in autoreactive marginal zone B cells and reduced GC formation, 
the main site of differentiation of B cells in long-lived autoreac-
tive plasma cells. At the molecular level, this was characterized 
by an increased activation of AMPK with subsequent decrease in 
phosphorylation of mTOR and STAT3 (41). Conversely, protective 
antibody response may be even boosted by metformin. Diaz et al. 
(65) evaluated the antibody response to influenza vaccination in 
T2D patients’ naïve and on metformin treatment, respectively. The 
drug enhanced vaccine-specific antibody titers in vivo and in vitro, 
and this effect was accompanied by an increase in switched mem-
ory B cell and a decrease in late/exhausted B cells, known to impair 
antibody responses. These mechanisms were associated with an 
increased AMPK phosphorylation and reduced intrinsic B  cell 
inflammation upon exposure to metformin, as demonstrated by a 
reduction in TNF-α, miR-155, and miR-16 expression, known to 
affect the ability of B cells to respond to antigenic stimulation (41).

Among several B-cell subpopulations so far identified (66), 
the innate-like B-1a cells represent a distinct subpopulation that 
can significantly contribute to generate circulating IgM natural 
antibodies, mucosal immunity, and immunoregulation (67, 68). 
Furthermore, two distinct phenotypes have been identified in 
B-1a cells. These are distinguished by the relative expression of the 
plasma cell alloantigen 1 (PC1, also known as ENPP1—ectonu-
cleotide pyrophosphatase/phosphodiesterase 1) and are named 
PC-1low and PC-1high, with the latter subsets exhibiting a more 
pronounced regulatory function (69, 70). The same glycoprotein 
PC-1 has been demonstrated to have a role in insulin resistance 
associated with T2D (71). Stefanovic et  al. (72) demonstrated 
an increased PC-1 expression in T2D lymphocytes, which was 
reverted by a 3-month metformin treatment and combined with a 
significant improvement of insulin sensitivity. Several lines of evi-
dence support a potential role of B1a cells in the development of 
autoimmunity (73); thus, the modulation of PC-1 by metformin 

may represent an additional immune-regulatory mechanism 
deserving further studies.

Effects of Metformin on Monocytes/
Macrophages
Macrophages represent the main tissue-resident immune cells in 
many organs providing a quick first-line response against patho-
gens. Upon activation, macrophages can polarize in two major 
phenotypes, i.e., the pro-inflammatory “classically” activated 
(M1) and the “alternatively” activated (M2, further subclassified 
as M2a, b, or c), mainly associated with resolution of inflamma-
tion and tissue repair processes (74, 75). Inflammatory infiltrates 
in autoimmune diseases are characterized by a predominance of 
a distinct macrophage lineage: active RA synovial tissue shows 
abundance of M1 macrophages, whereas in spondyloarthritis 
patients, the M2 phenotype predominates (76). Consistently 
with their respective functions, the cytokine portfolio is sig-
nificantly diversified, with M1 macrophages producing mainly 
pro-inflammatory cytokines relevant to the pathogenesis of 
autoimmune diseases (i.e., TNF-α, IL-1, IL-6, IL-12, IL-23, and 
MCP-1), as opposed to M2 macrophages releasing cytokines with 
anti-inflammatory properties, e.g., IL-10 and TGF-β (77).

In vitro, metformin demonstrated anti-inflammatory proper-
ties on macrophages via AMP-dependent and -independent 
mechanisms. In THP-1 acute monocytic leukemia cell line, 
metformin treatment abrogates phorbol 12-myristate 13-acetate-
induced monocyte-to-macrophage differentiation and IL-1β, 
TNF-α, and MCP-1 production (78). This effect is primarily 
mediated by AMPK activation resulting in a decrease in JNK1 
phosphorylation (influencing inflammatory cytokine synthesis 
and release) and the negative regulating STAT3 phosphorylation 
(modulating the effects on differentiation). In primary murine 
peritoneal macrophages, metformin treatment dose-dependently 
suppresses lipopolysaccharide (LPS)-induced TNF-α and IL-6 
expression. This effect was attributable, at least in part, to the 
AMPK-dependent ATF-3 induction via competition with NF-κB 
for binding to TNF-α and IL-6 promoters (79). Similarly, Kelly 
et al. (80) demonstrated that metformin dose-dependently inhibits 
LPS-induced pro-IL-1β while boosting IL-10 expression in murine 
bone marrow-derived macrophages. In this case, the effect on 
pro-IL1β was independent of AMPK activation and associated 
with reduced reactive oxygen species (ROS) production as a direct 
consequence of metformin-induced mitochondrial complex 
I suppression. In high-fat diet (HFD) mice, a classical model of 
obesity-induced T2D and chronic inflammation, treatment with 
metformin resulted in reduced serum levels of IL-6 and TNF-α and 
in the AMPK-mediated modulation of macrophage polarization 
with a shift toward an anti-inflammatory M2 phenotype (81).

Similarly, in human macrophages, metformin was able to  
suppress the LPS-induced expression of TNF-α and MCP-1 and 
ROS production in an AMPK-dependent manner. This effect 
was associated with a reduced NF-kB and MAPK activity (82). 
In impaired glucose tolerance patients treated with fenofibrate, 
addition of metformin for 12  weeks was able to reduce LPS-
induced production of TNF-α and IL-6 (83) by peripheral blood 
monocytes. Likewise, in impaired fasting glucose patients treated 
with simvastatin, addition of metformin was able to reduce 
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LPS-induced TNF-α, IL-1β, IL-6, IL-8, and MCP-1 (84). Using cul-
tures of human adipose tissue, Bruun et al. (85) demonstrated that 
metformin reduces the release of MCP-1 by resident macrophages.

Macrophage migration inhibitory factor (MIF) is a pleio-
tropic cytokine, acting as potent M1-polarizing factor (86, 87). 
Evidence for a role for MIF in autoimmunity has been provided 
by studies showing that MIF is expressed at increasing levels in 
different experimental models of disease. Immunoneutralization 
or genetic deletion of MIF confers protection from pathologic 
progression (88–91). In addition, both the circulating levels and 
the tissue expression of MIF are elevated in patients with autoim-
mune inflammatory disorders, and high-expression MIF alleles 
have been associated with more severe end-organ damage in RA 
(92, 93), SLE (94), and scleroderma (95). As for the macrophage 
polarization, synovial fluids in RA patients contain high levels of 
M1 macrophage-derived mediators, along with low levels of M2 
macrophage-derived mediators (96). Adoptive transplantation of 
M2, but not M1, macrophages significantly reduced SLE severity 
in lymphocyte-derived DNA (ALD-DNA) induced lupus mice 
(97). Dandona et  al. (98) demonstrated that plasma MIF con-
centrations and MIF mRNA expression in the mononuclear cells 
are elevated in obese patients, and oral metformin treatment for 
6 weeks suppresses MIF levels. Further studies are eagerly awaited 
to further define the role of MIF in autoimmune diseases.

Effects of Metformin on Neutrophils
Neutrophils are the most numerous circulating leukocytes in 
humans, providing a powerful first-line defense against bacterial 
and fungal pathogens. Despite these cells densely infiltrate vari-
ous tissues in autoimmune diseases, their exact role was puzzling 
until the last years (99), when a number of studies demonstrated 
the involvement of neutrophils in different phases of autoimmune 
diseases pathogenesis (100).

From a clinical standpoint, the neutrophil count and 
neutrophil-to-lymphocyte ratio (NLR, normal range: 0.78–3.53) 
emerged in the last years as an accessible, inexpensive measure of 
systemic inflammation (101). NLR has been extensively studied 
as a prognostic marker in cancer patients (102); moreover, it cor-
relates with disease activity in SLE (103), RA (104), MS (105), and 
IBD (106). In a large cohort of diabetic patients, Cameron et al. 
(107) demonstrated that treatment with metformin, but not with 
sulfonylureas, significantly reduces NLR after 8–16 months. Also, 
metformin has been shown to reduce neutrophil count in young 
women with PCOS (108) and in girls born small for gestational age 
with exaggerated adrenarche and precocious pubarche (108), two 
conditions characterized by a pronounced systemic inflammatory 
state. Finally, in diabetic patients undergoing endarterectomy for 
carotid artery stenosis, Eilenberg et al. (109) demonstrated that 
metformin treatment was associated with reduced expression of 
neutrophil gelatinase-associated lipocalin—a protein released by 
activated neutrophils and associated with atherosclerotic plaques 
vulnerability—thus contributing to lower cerebral embolization 
events.

More recently, a novel, exciting feature of neutrophils has 
been disclosed, namely, the production of neutrophil extracel-
lular traps (NETs) (110). NETs are DNA structures released upon 
chromatin decondensation and spreading in the extracellular 

space. Several proteins adhere to the DNA scaffold, including his-
tones and components of primary and secondary granules, such 
as elastase, myeloperoxidase, cathepsin G, lactoferrin, pentraxin 
3, gelatinase, proteinase 3, LL37, and peptidoglycan-binding 
proteins. Exaggerated NETosis is increasingly being recognized 
as a contributing mechanism in induction and maintenance of 
autoimmunity and a major source of autoantibodies generation 
in SLE (111) and RA (112). Furthermore, Wang et  al. demon-
strated that mitochondrial DNA, in addition to nuclear DNA, can 
be found in NETs obtained by stimulating neutrophils from SLE 
patients and anti-mitochondrial DNA antibody response associ-
ates with disease activity even better than anti-dsDNA. Moreover, 
treatment with metformin in SLE patients resulted in a reduction 
of disease flares and corticosteroid use (54). NETosis can be 
experimentally induced in  vitro following exposure of human 
peripheral blood white cells to high glucose concentration (113); 
similarly, exaggerated NETosis has been clearly demonstrated in 
patients with T2D (113, 114), and this process can be restored 
by treatment with metformin (115). Finally, in patients with pre-
diabetes, metformin treatment reduces the concentration of NET 
components independently from glycemic control (116).

EFFECTS OF METFORMIN ON OTHER 
CELLS INVOLVED IN AUTOIMMUNE 
DISEASES

Effects of Metformin on Fibroblasts
Fibroblasts actively participate in the pathophysiology of several 
autoimmune conditions (117), but their role is emphasized in 
systemic sclerosis (SSc)—the prototypical systemic fibrosing 
disease—in which activated myofibroblasts drive uncontrolled 
extracellular matrix accumulation in the skin and internal organs. 
At a subcellular level, TGF-β is the key cytokine regulating fibro-
blasts aggressive behavior in SSc (118). TGF-β signals through 
cell-surface serine/threonine kinase receptors to the intracellular 
Smad proteins, which in turn accumulate in the nucleus to regu-
late gene expression (119).

Extensive preclinical data suggest a potent antifibrotic effect of 
metformin. In cardiac fibroblasts, metformin treatment has been 
shown to inhibit fibrosis and collagen synthesis via the TGF-β/
Smad3 signaling pathway (120) and to impair the differentia-
tion into myofibroblasts (121). A similar effect was observed in 
other cellular models, including nasal polyp-derived fibroblasts 
(122), renal fibroblasts (123), hepatic stellate cells (124), and 
in fibroblasts harvested from capsular ligaments of ankylos-
ing spondylitis patients (125). In lungs, metformin attenuates 
gefitinib-induced exacerbation of pulmonary fibrosis by inhibit-
ing the TGF-β/SMAD2/3 signaling pathway (126). Finally, our 
group demonstrated that metformin can ameliorate skin fibrosis 
in the bleomycin-induced murine model of scleroderma (127), as 
indicated by reduced dermal thickness, collagen accumulation, 
and number of lesional myofibroblasts. The mechanisms leading 
to metformin-mediated downregulation of the TGF-β axis have 
been elusive until recently, when an elegant study demonstrated 
that metformin is able to directly bind to TGF-β, thereby prevent-
ing the interaction with its receptor (128).
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Effects of Metformin on Osteoblasts/
Osteoclasts
Under physiological conditions, bone homeostasis is main-
tained through a harmonic balance between bone formation 
and resorption, orchestrated by osteoblasts and osteoclasts, 
respectively (129). During RA and other autoimmune diseases, 
pro-inflammatory cytokines such as IL-1 and TNF-α alter this 
subtle equilibrium in favor of bone-resorptive mechanisms, 
ultimately leading to local (bony erosions) (130) and systemic 
(osteoporosis) consequences (129). AMPK plays an important 
role in regulating bone turnover by suppressing osteoclasts (131) 
while concurrently stimulating osteoblasts (132). Consequently, 
metformin exhibited protective effects in animal models of osteo-
porosis (133, 134). Furthermore, Son et al. (37) demonstrated that 
improvement in bone erosion and cartilage destruction in CIA 
mice following exposure to metformin is associated with reduced 
osteoclastogenesis via an AMPK/mTOR/STAT3-dependent 
mechanism. In humans, it is well accepted that T2D is associated 
with an increased risk of osteoporosis (135). While some antidia-
betic medications, such as thiazolidinediones, demonstrated clear 
pro-osteoporotic effects (136), metformin treatment has been 
associated with reduced risk of fractures in a large, case–control 
study (137). So far, there are no data on the effect of metformin on 
bone homeostasis in patients with rheumatic disease.

METFORMIN AND GUT MICROBIOTA

Growing evidence indicates that the gut microbiota—i.e., the 
approximately 100 trillion germs located into the gastrointestinal 
lumen, especially in the distal segments—plays a role in human 
body homeostasis and health state (138). Alterations in the gut micro-
biota composition, a condition referred to as dysbiosis, has been 
associated with the development of several autoimmune diseases, 
including RA (139), SLE (140), MS (139), and Behcet’s disease (141).

Several factors and agents have been shown to interfere or even 
modulate the microbiota; however, little is known about the effects 
exerted by metformin on human gut and vice versa. Cabreiro et al. 
(142) investigated the impact of metformin on life cycle of the 
nematode Caenorhabditis elegans. Following on previous studies 
showing that metformin extended the lifespan of C. elegans (143), 
the authors aimed at investigating the mechanisms underlying 
these effects and demonstrated that metformin slowed aging of C. 
elegans rather than reducing the risk of death. Furthermore, using 
Escherichia coli co-cultures, they found that metformin inhibits 
bacterial folate and methionine metabolism, both mechanisms 
thought to contribute significantly the therapeutic efficacy of 
metformin. The conclusions support the C. elegans/E. coli theory 
of evolution (144), which implies that the animal or plant, with 
all associated microorganisms, are considered a “unit” of selec-
tion during evolution (“the holobiont”). Under this light, studies 
aiming at understating the mechanisms mediating the effects of 
metformin need to be conducted on adequately designed models 
and will require accurate assessment of the gut microbiota.

Further evidence of an axis connecting the gut microorgan-
isms with metformin mechanism of action is provided by an 
experimental study in which normal diet or HFD mice were 

treated with metformin for 6  weeks. Compared to untreated 
(control) HFD mice, those receiving metformin improved 
the glycemic profile, and this effect was associated with higher 
abundance of Akkermansia muciniphila, a mucin-degrading 
bacterium. Furthermore, oral administration of A. muciniphila 
reduced visceral adipose tissue inflammation and enhanced 
glucose tolerance in HFD mice (145). Similar findings were 
confirmed at some extent by Lee and Ko (146) who showed that 
the abundance of A. muciniphila (12.44 ± 5.26%) and Clostridium 
cocleatum (0.10 ± 0.09%) significantly increased after metformin 
treatment in HFD mice. The same authors also addressed the 
role of Akkermansia and other microbiota genera in obese, aged 
mice treated with metformin (147). HFD mice treated with met-
formin had significantly increased abundance of Akkermansia, 
Bacteroides, Butyricimonas, and Parabacteroides, and this cor-
related with a reduced expression of inflammatory cytokines 
(IL-1β and IL-6) in the adipose tissue. It has been suggested that 
metformin treatment could restore glucose sensing by regulating 
the expression of small intestinal sodium glucose cotransporter-1 
in rats, which is reduced by HFD. Upper small intestine treatment 
with metformin has been shown to change the microbiota by 
increasing, at least in part, the abundance of Lactobacillus (148). 
Finally, Wu et al. assessed metformin–microbiota interactions in a 
gut simulator and confirmed that metformin alters the biological 
functions of different microbial phyla, including the regulation of 
genes encoding for metalloproteins or metal transporters (149).

Several clinical studies investigating the relationship between 
gut microbiota and metformin treatment have been performed 
in subjects with T2D. Forslund et al. (150) analyzed 784 human 
metagenomes and observed a shift in the microbiota during met-
formin treatment with a depletion of butyrate-producing taxa. They 
proposed the potential role of a microbial influence on the effects of 
metformin, which could be related with short-chain fatty acids pro-
duction (151). In keeping with this finding and with those observed 
with A. muciniphila in experimental models (145–147), a study 
recruiting 28 patients with T2D (14 on metformin) and 84 matched 
controls confirmed an association between glucose tolerance and 
metformin-modulated gut microbiota. In details, in addition to  
A. muciniphila, other gut microbes were more abundant in indi-
viduals receiving metformin, namely Butyrivibrio, Bifidobacterium 
bifidum, and Megasphaera, which are known to produce short- 
chain fatty acids. Conversely, Clostridiaceae 02d06 were more abun-
dant in patients with T2D not taking metformin (150).

In an exploratory, unblinded study (NCT01357876), Napolitano 
et al. recruited 12 T2D patients who were receiving a stable dose 
of metformin (≥ 1,000  mg/day) for more than 3  months. They 
collected post-prandial blood samples, stool samples, upper small 
intestine bile, and fasting plasma samples for metformin concen-
trations at scheduled intervals. They observed that abundance of 
the Firmicutes in the microbiota was positively correlated with 
changes in cholic acid and conjugates, while Bacteroidetes abun-
dance was negatively correlated with those of bile acids. Both were 
also correlated with levels of serum peptide tyrosine–tyrosine, 
further highlighting a complex gut-based pharmacology underly-
ing the mechanism of action of metformin (152).

Indeed, modulating the gut microbiota by increasing favorable 
phyla, such as Akkermansia spp., might enhance the antidiabetic 
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effects exerted by metformin. On the other side, microbiota 
modifications induced by metformin may affect immune func-
tion. In NOD mice, A. muciniphila has been demonstrated to 
protect from the development of islet cell autoimmunity (153) 
and restore intestinal immunity and homeostasis in experimental 
models of IBD (154, 155).

The relationship between metformin and microbiota is likely 
bi-directional, with a pronounced microbial effect on the mecha-
nisms of action and efficacy of the drug, and with metformin 
affecting functions and abundance of specific phyla. Further 
data on this complex drug–microbiota interplay may extend our 
knowledge on metformin and identify novel targets for tailored 
treatments based on gut microbiota manipulation exploitable in 
autoimmune diseases.

CONCLUSION

Metformin is a safe, inexpensive medication with a history of 
more than 50  years of clinical experience in treating patients 
with T2D. In the last decade, several preclinical and clinical stud-
ies highlighted pleiotropic beneficial effects of this molecule on 
other clinical domains, including cancer susceptibility and car-
diovascular disease risk. More recently, different in vitro studies 
demonstrated that metformin can regulate the function of many 
cell types involved in autoimmunity development and mainte-
nance. Concurrently, metformin has been shown to be able to 
restore immune homeostasis and improve disease severity in 
animal models of autoimmune diseases. Based on this preclini-
cal background and because of a well-established safety profile, 
metformin should be reconsidered in clinical trials designed to 

prove its efficacy in patients with autoimmune diseases. Largely 
available retrospective data (i.e., by analyzing RA patients treated 
with metformin for comorbid T2D) may contribute to provide 
further support to longitudinal studies. We are now going to 
test this hypothesis in humans through a double-blind placebo-
controlled clinical trial (Metformin Treatment in Systemic 
Sclerosis, METSS—EudraCT number: 2018-000733-12) that 
recently received funding from Italian Ministry of Health. Time 
will tell us whether a well known and relatively safe drug, will be 
a new “bullet” available to physicians dealing with patients with 
autoimmune/rheumatological conditions.
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